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Phase behaviors of binary alloys with an embedded atom model potential are investigated using the ther-
modynamic perturbation theory. The free energies of the liquid and solid phases are computed using the
fundamental measure density functional theory and accurate approximations to the hard-sphere mixture corre-
lation functions. The method is applied to calculate the Au-Cu alloy phase diagram. To improve the accuracy
of the computed phase diagram, we developed a systematic approach to optimize the model potential of Au-Cu
by adjusting the melting temperature of the pure Au to its experimental one. With such an optimized potential
the computed Au-Cu alloy phase diagram is in good agreement with the experimental one for the whole
composition range.
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I. INTRODUCTION

In this paper a method based on the thermodynamic per-
turbation theory and density functional theory �DFT� is ap-
plied to compute free energies of liquid and solid mixtures
and, hence, to study alloy phase behaviors. In the framework
of the Weeks, Chandler, and Andersen �WCA� perturbation
theory for liquids and solids,1–3 a pair intermolecular poten-
tial is split into a reference part and a perturbative one; the
former is mapped onto an effective hard-sphere �HS� system.
The free energy is, thus, separated into two parts: one of
them is the free energy of HS reference system, whereas the
second one is the perturbation. The latter can be obtained
from the perturbative potential and the correlation functions
of the HS system. We note that a similar strategy has been
used before4–7 although the calculations of free energies of
binary liquid and solid alloys at these studies were based on
the different methodologies rather than on a single theoreti-
cal approach. Our strategy to compute liquid and solid ther-
modynamic properties within the same theoretical frame-
work provides an important advantage for a consistent
description of solid-liquid phase coexistence.

Previously, the WCA perturbation theory has been applied
to calculate free energies of single-component metallic8 and
Lennard-Jones �LJ� �Ref. 9� liquids and solids to study the
freezing of pure liquids. In Ref. 8 the parameters of the ref-
erence HS systems were taken from simulations, whereas in
Ref. 9 the necessary properties of the HS system were ob-
tained from the fundamental measure �FM� DFT.10–12 Such a
self-contained theoretical approach without requiring any in-
puts from simulations is especially useful for multicompo-
nent systems because simulation results sometimes are not
easily accessible.

The theories for HS liquid mixtures were proposed before
to calculate free energies13,14 and correlation functions.15

Such studies made possible for the applications of the ther-
modynamical perturbation theory to liquid mixtures.16 Re-
cently we developed a theoretical method to compute the
correlation functions of HS solid mixtures.17 Combined with
the DFT for solids18–21 this method allows us to calculate
free energies of solid mixtures with realistic interaction po-
tentials and, hence, to study the phase behaviors of realistic

molecular mixtures. An application to the freezing of LJ
mixtures22 has been successful as the obtained spindle- and
azeotropic-type solid-liquid phase diagrams of LJ mixtures
are in good agreement with the corresponding ones from
simulations.

In the present paper this methodology is applied to study
the freezing of liquid Au-Cu alloy with an embedded atom
model �EAM�.23 In general, EAM model potentials are
widely used to describe many properties of metals and
alloys.24,25 These potentials have a density-dependent term,
which includes many-body interactions. As any theoretical
calculations based on the perturbation theory, a pair potential
is needed. Previously, Foiles26 proposed a method to extract
a density-dependent effective pair potential of an EAM po-
tential of pure metals. Here we generalize this method to
alloys. Typically the model metallic interaction potentials are
optimized with respect to the experimental mechanical prop-
erties of an alloy. The nonmechanical properties, such as the
melting temperature, are not necessarily reproduced and may
deviate significantly from the experimental one. For ex-
ample, there is a significant difference in the melting tem-
perature for pure Au from the comparison between the ex-
perimental one and the one from simulations27 using the
EAM model of Au-Cu alloy.23 Thus there is a great interest
to incorporate some experimental thermodynamic properties
into the development of model potentials. But such a pro-
gram is very time consuming in general if using computer
simulations.28 In this paper we show that a Gibbs-Duhem
integration method can be used to optimize the EAM model
potential28 such that the Au melting temperature is in close
agreement with its experimental value. With such an im-
proved potential we obtained a solid-liquid phase diagram of
Au-Cu mixture to be in good agreement with the experimen-
tal one for the whole composition range. Thus our work in-
dicates that it is possible to compute phase diagrams of al-
loys accurately and reliably from DFT and the WCA
perturbation theory. Furthermore, such a methodology can
also be used to incorporate thermodynamic properties of me-
tallic systems into the development of model potentials with-
out invoking the computationally intensive molecular simu-
lations.

The rest of the paper is organized as follows. In Sec. II we
outline the theoretical methods used to calculate the effective
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pair potentials and free energies of alloys. In Sec. III we
present a solid-liquid phase diagram of Au-Cu alloy and
compare it with the experimental one. Then we discuss a
method to reparametrize the EAM model potential of Au-Cu
using Au experimental melting temperature as an input.
Some concluding remarks are given in Sec. IV.

II. THEORY

Consider an alloy with an EAM. Within this model the
total energy Etot of a metallic system is given by24

Etot = �
k

Ui�ek� +
1

2 �
k�m

�ij�rkm� , �1�

ek = �
k�m

f j�rkm� , �2�

where Ui is the energy for an embedding atom-type i when
the electron density is ek at position r�k and �ij is the repul-
sive pair interaction between atom types of i and j located
at r�k and r�m, respectively. The term f j�rkm� is the contribution
of atom-type j at r�m to the electron density at r�k and rkm
= �r�k−r�m�. The summations run over all atoms in the system.

Foiles26 proposed a method, which is based on the expan-
sion around the average electron density, to approximate the
many-body interaction in Eq. �1� by an effective density-
dependent pair potential. This method is known to be able to
give accurate thermodynamic and structural properties.8,26 A
straightforward generalization of this method to binary mix-
tures gives us the following total energy,

Etot = �
i=1

2

Ni�Ui�ē� − ēUi��ē�� +
1

2 �
k�m

�ij�rkm� , �3�

where Ni is the number of atoms of i type and �ij�r� is an
effective pair potential;

�ij�r� = �ij�r� + Uj��ē�f i�r� + Ui��ē�f j�r�

+
1

2
Uj��ē��f i�r��2 +

1

2
Ui��ē��f j�r��2. �4�

In the above expressions the symbols � and � denote the first
and second derivatives with respect to the electron density.
For practical calculations of the average host electron density
ē, we generalize the Foiles prescription and approximate it
by the average electron density for substitutionally disor-
dered fcc solid solution with a lattice constant such that the
overall atomic density matches a given bulk density.

In the present study we consider an fcc Au-Cu solid solu-
tion. It is known that EAM potentials work well for fcc
structure29 and the applicability of Eqs. �3� and �4� together
with the definition of the average electron density for other
lattices �for instance, bcc� still need to be tested.30

To calculate the free energies of liquid and solid phases
using the WCA perturbation theory, the potentials �ij�r� are
separated into a short-range, purely repulsive reference part
�ij

�ref��r� and a perturbative part �ij
�pert��r�; the reference sys-

tem is mapped onto an effective HS system with a set of

temperature-dependent HS diameters �dij� �with d11�d22 and
d12= �d11+d22� /2� prescribed by the WCA criteria for
mixtures.16,22,31 Using Eq. �3� the resulting expression for the
total Helmholtz free energy is

F�x,�,T� = N�
i=1

2

xi�Ui�ē� − ēUi��ē�� + FHS

+
N�

2 �
i,j=1

2

xixj	 dr�gij
�HS��r��ij

�pert��r� , �5�

where T is the temperature, N is the total number of particles,
� is the total density, xi is the molar fraction of type i par-
ticles, and FHS and gij

�HS��r� are the free energy and correla-
tion functions, respectively, of the HS reference system. The
latter is characterized by the total packing fraction �
= �

6 ��x1d11
3 +x2d22

3 �, the molar fraction of larger spheres x
=x2, and the diameters ratio 	=d11 /d22.

To calculate the free energy FHS of an HS system we use
the classical DFT.32 The DFT approach is based on the exis-
tence of a functional FHS��1�r�� ,�2�r��� of the densities of par-
ticles of each species. In practice FHS is split into an �exactly
known� ideal gas contribution Fid and an excess contribution
Fex, the latter depending entirely upon interparticle interac-
tions. We approximate the excess functional Fex by a funda-
mental measure density functional,11,12

Fex =	 dr�
�n��r��� , �6�

where �n��r��� are the weighted densities,

n��r�� = �
i=1

2 	 dr�� �i�r�� ��i
����r� − r�� � �7�

and �i
��� are the scalar, vector, and tensor weight functions.

Practical calculations require specifying the density distri-
bution and the lattice structure of the crystal. We consider the
substitutionally disordered fcc solid solution �this is the case
for Au-Cu alloy� with the local densities ��i�r��� being mod-
eled by the Gaussian distributions with width parameters �1
and �2. Minimization of the functional FHS with respect to
�1 and �2 for fixed mixture parameters gives equilibrium
values of �1 and �2 as well as the HS solid free energy FHS.
For a homogeneous HS liquid mixture the functional Eq. �6�
reduces to the Boublik-Mansouri-Carnahan-Starling-Leland
�BMCSL� expression for the free energy of HS liquid
mixtures.13,14

For the correlation functions gij
�HS��r� of an HS solid mix-

ture used in the perturbation theory �Eq. �5��, we generalized
a theory of Ref. 33 for single component systems to HS solid
mixtures. Within our theory17 the correlation functions
gij

�HS��r� are defined as a orientational average of two-body
densities and are expressed as a sum over coordination shells
in such a way that the distributions of the second and higher
coordination shells can be approximated in a mean-field
fashion and the first shell distribution is parametrized to in-
corporate the nearest-neighbor correlations. The seven pa-
rameters of the first peaks are determined by imposing sum
rules to specify the contact values gij

�HS��dij�, the normaliza-
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tion to the nearest-neighbor number, and the mean distance
to nearest neighbors. For a set of given parameters of an HS
mixture �, x, and 	 and a given solid lattice structure, the FM
DFT yields the values of �1, �2, pressure P, and derivative
�
�	 �

Fex

N �, which are combined to determine gij
�HS��r�. The cor-

relation functions are shown to be accurate for moderately
asymmetric solid mixtures, i.e., for 	�0.90.17

The correlation functions of the HS liquid mixtures
gij

�HS��r� are obtained from the equilibrium condition,32

	�HS��1j�r�,�2j�r��
	�ij�r�

= 0 �i = 1,2� , �8�

where

�HS = FHS − �
i=1

2 	 dr��ij�r����i − �ij
�HS��r���

is the grand canonical potential functional, �ij
�HS��r�� is the HS

potential of interaction, �ij�r�� is the density profile of i-type
particle in an external field of the fixed j-type particle, and �i
is the chemical potential of i-type particles �computed from
the BMCSL equation of state�. Again we approximate FHS by
the FM density functional and solve the integral equations
�Eq. �8�� for �1j�r� and �2j�r� numerically.22,34 This proce-
dure is repeated for j=1,2 to obtain a set of ��ij�r���. The
correlation functions are given by the following relation:35

gij
�HS��r� = �ij�r�/�i. �9�

Thus, using the free energies FHS and correlations func-
tions gij

�HS��r� for HS solid and liquid binary mixtures, we are
able to calculate the total Helmholtz free energy F�x ,� ,T� of
liquid and solid alloys �Eq. �5��. To find the coexistence con-
ditions between the liquid and solid phases for a given pres-
sure P and temperature T, we calculate the dependence of
liquid and solid Gibbs free energies per particle G�x , P ,T� /N
on the composition x,

G�x,P,T�
N

=
F�x,�,T�

N
+

P

�
, �10�

where the dependence of the total density � on the right-hand
side of this formula on the variables x, P, and T can be found
from the solution of the equation P=�2 �

�� � F�x,�,T�
N �x,T. The

Maxwell double-tangent construction will lead to the desired
phase diagram.22

In practical applications the enthalpy H=U+ PV of metal-
lic alloys is important. As UHS

�ex�=0 we calculate H per par-
ticle using the formula,

H

N
=

FEAM

N
+

3

2
kBT +

Fpert

N
+

P

�
, �11�

where FEAM and Fpert are the first and the third term on the
right-hand side of Eq. �5�.

III. RESULTS

As an illustration of the above method, solid-liquid phase
equilibria of an Au-Cu EAM model alloy are calculated. For
a particular Au-Cu EAM model the electron densities, the
repulsive potential, and the embedding energy are repre-
sented as

f i�r� = Ai exp�− r/�i
e�, �ij�r� = Bij exp�− r/�ij

r �,

Ui�e� = − Ci

e . �12�

The model parameters are listed in Table I.
In Figs. 1 and 2 we show the dependence of number den-

sity � and the enthalpy per particle H /N on the temperature T
of liquid Au-Cu alloys for some selected compositions. It is
seen that the dependence of � and H /N on T is linear and the
results of the theoretical calculations agree well with the
ones from computer simulations.27 It is also seen from Fig. 2
that although the enthalpy H /N difference between the
theory and simulations is typically couple of percents �for
pure Cu the difference is less than 4%�, the slopes of H /N
curves obtained from the theory and simulations for a given
composition have larger deviations. In Fig. 3 we show the

TABLE I. Parameters of the potential model for Au-Cu alloys �Ref. 23�.

i / j Bij

�ij
r

�Å� Ai

�i
e

�Å�
Ci

�eV�

Cu 7076.56 0.241 535 188.542 0.536 562 1

Au 14 759.9 0.272 639 4162.93 0.366 085 1.421 97

Cu/Au 10 153.2 0.258 268
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FIG. 1. The dependence of number density ��Å−3� on the tem-
perature T�K� for liquid Au-Cu alloys with xAu=0, 0.25, 0.5, and
0.75 and P=1 atm. The results of the theory are compared with the
ones from computer simulations �Ref. 27�.
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dependence of the specific heat cp= d
dT � H

N � of liquid Au-Cu
alloys, which is the slope of a linear H−T dependence,
against the composition �curve “theory 1”�. It is seen that
cp−T dependence is a decreasing function with a wide pla-
teau region around x=0.45–0.75, where the cp�T� function is
almost flat; the difference between the specific heat cp ob-
tained from the theory and numerical experiments reaches
20% for some compositions, which reflect the difficulty to
calculate the derivatives of thermodynamic properties using
the perturbation theory.

In Fig. 4 we show the dependence of lattice spacing a
= �4 /��1/3 for the fcc lattice on the composition for T
=748 K �curve theory 1�. It is seen that the theoretical cal-
culations agree well with the experimental ones.

Figure 5 shows a phase diagram for the Au-Cu mixture
system �curve theory 1� along with the experimental result.37

We obtained an azeotrope phase diagram similar to the ex-
perimental one. The discrepancy between the results of the

theory and experiment is mostly due to the fact that the EAM
potential model of Ref. 23 is not quite accurate to reproduce
the experimental melting temperature Tm=1336 K of pure
Au �see Fig. 5�. The reason is that the melting temperature is
a nonmechanical value, and it is not generally included in the
potential development, hence, good agreements of such a
quantity with experiment is not necessarily guaranteed. As
we can calculate any thermodynamic properties of a model
system within our theoretical methodology efficiently, the
original EAM model potential can be optimized by adjusting
the computed melting temperature of Au to be in agreement
with the experimental one using the Gibbs-Duhem integra-
tion method.28,38 For a single-component system a change in
each of the parameters �Xi� of the potential alters the melting
temperature
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FIG. 2. The dependence of enthalpy per particle H /N�eV� on
the temperature T�K� for liquid Au-Cu alloys with xAu=0, 0.25, 0.5,
0.75, and P=1 atm. The results of the theory are compared with the
ones from computer simulations �Ref. 27�.
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FIG. 3. Specific heat of liquid Au-Cu alloys. The results of the
theory with the original �Ref. 23� �curve theory 1� and reparam-
etrized �curve theory 2� potential are compared with the experiment
�Ref. 36� and simulation ones �Ref. 27�.
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FIG. 4. The dependence of the lattice spacing a�Å� on the com-
position of solid Au-Cu alloy �P=1 atm and T=748 K�. The re-
sults of the theory with the original �Ref. 23� �curve theory 1� and
reparametrized �curve theory 2� potential are compared with the
experimental one �Ref. 37�.
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FIG. 5. Temperature-composition �T-x� liquid-solid phase dia-
grams for the binary Au-Cu system at P=1 atm. The results of the
theory with the original potential �curve theory 1� and reparam-
etrized �curve theory 2� potential are compared with the experimen-
tal one �Ref. 37�. The lines to connect the data points are a guide for
the eyes only.
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Tm��Xi�� = Tm,0 + �
i
� �T

�Xi
�

Xj�i,0

�Xi − Xi,0� , �13�

where Tm,0 is the melting point of the original model with
parameters �Xi,0�. The derivatives at the right-hand side of
this equation can be found from the following relation:

� �T

�Xi
�

P,Xj�i;coex
=

T��s,i − �l,i�
�Hs − Hl�

, �14�

where H is the enthalpy and �i� �G
�Xi

�T,P,Xj�i
.

We have calculated �Tm /�Xi for each of the parameters of
pure Au potential from Table I. It was determined that the
parameter CAu is mostly responsible for the change in the
melting point. We found that the new CAu=1.567 49 eV led
to the Au experimental melting temperature. Using this new
potential we have recalculated the Au-Cu phase diagram
shown in Fig. 5 �curve “theory 2”�. It is seen that in contrast
to the original potential, the new potential model yields a
phase diagram, which is in good agreement �within 6%� with
the experimental one for the whole composition range. It is
also seen from Fig. 5 that for both potentials the theory pro-
vides the solidus and liquidus lines to be convex for compo-
sitions larger than the azeotropic point, i.e., have qualita-
tively different behavior compared to experiment. This may
be due to the deficiencies of the used perturbation theory22 or
specific functional form of the EAM potential in Eq. �7�.
Thus, computer simulations of the whole phase diagram may
be needed to completely validate the theoretical prediction.

In Table II we assembled the parameters of coexisting
solid and liquid phases of Au-Cu alloy with reparametrized
potential for some selected temperatures as well as the pa-
rameters � and 	 of the reference HS systems. The perturba-
tion theory for solid mixtures is accurate if the parameters of
the reference HS mixture are in the range of 	s�0.90 and
�s�0.55 �Refs. 17 and 22�; it is seen that these conditions
are always satisfied in this paper. We note that the present

result is in qualitative agreement with the empirical Hume-
Rothery rule39 according to which disordered metallic alloys
are still stable when the atomic size ratio is larger than 0.85.

The Au-Cu potential was originally developed to fit some
experimental properties of solid and liquid Au-Cu alloys. For
the new value of the potential parameter CAu we have recal-
culated a variety of physical properties of these alloys.

In Fig. 6 we show the dependence of number density � on
the temperature T for pure liquid Au. It is seen that the re-
sults for � from the reparametrized model agrees a bit better
with the experimental data,37 compared to the ones from our
theory and simulations27 using the original model.

We have also calculated the elastic constants of pure Au
for T=0. To this end we computed the values of �2F /��i

2,
where �i �i=1,2 ,3� are the parameters of the lattice distor-
tion �we used the fact that for T=0 the free energy F is equal
to Etot �Eq. �3���. The connection between the elastic con-

TABLE II. The parameters of the coexistence of the liquid and solid Au-Cu mixture systems for various
temperatures T: liquid and solid compositions xl and xs and number densities �l and �s; the parameters of
reference liquid and solid HS systems at the coexistence: the packing fractions �l and �s and the diameter
ratios 	l and 	s.

T �K� xl xs �l �Å−3� �s �Å−3� �l �s 	l 	s

1400 0.0297 0.0543 0.0732 0.0764 0.49 0.52 0.93 0.94

1375 0.0642 0.0888 0.0727 0.0758 0.49 0.52 0.93 0.94

1350 0.0839 0.1085 0.0725 0.0756 0.49 0.53 0.93 0.94

1325 0.1725 0.2021 0.0708 0.0741 0.49 0.53 0.92 0.94

1300 0.2119 0.2415 0.0701 0.0735 0.50 0.53 0.92 0.94

1275 0.2562 0.2858 0.0692 0.0727 0.50 0.54 0.92 0.94

1250 0.3695 0.3892 0.0671 0.0709 0.50 0.54 0.92 0.93

1225 0.4384 0.4483 0.0658 0.0698 0.51 0.54 0.91 0.93

1225 0.5222 0.5172 0.0641 0.0684 0.51 0.54 0.91 0.93

1250 0.6404 0.6157 0.0613 0.0663 0.50 0.54 0.91 0.92

1275 0.7290 0.6995 0.0592 0.0645 0.49 0.54 0.91 0.92

1300 0.8472 0.8275 0.0564 0.0618 0.47 0.55 0.91 0.91
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FIG. 6. The dependence of the number density ��Å−3� on the
temperature T�K� for pure liquid Au. The results of the theory with
the original �curve theory 1� and reparametrized �curve theory 2�
potential are compared with Monte Carlo simulations �MCS� �Ref.
27� and experiment �Refs. 40 and 41�.
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stants and the values of �2F /��i
2 for the different types of

distortions can be found in Refs. 42–44. We observed that in
comparison to the original potential the new potential is
slightly worse to model the experimental values of the elastic
constants45 although it still provides these values to be in the
reasonable agreement with the experimental ones �Table III�.
Table III also shows the latent heat of fusion �=Hl /N
−Hs /N� of pure Au, which gets slightly worse for the rep-
arametrized potential.

In Fig. 3 we show the dependence of the specific heat
cp= d

dT � H
N � against the composition for reparametrized poten-

tial �curve theory 2�. It is seen that although the result from
the reparametrized model differs only slightly from the result
of the original model, the specific heat cp in reparametrized
model is a pure decreasing function of the temperature T, the
same as it is from the numerical simulations. Therefore we
conclude that the model with reparametrized potential is
more reasonable to calculate cp−T dependence compared to
the one with the original potential.

In Fig. 4 we show the dependence of lattice spacing a vs
composition for reparametrized potential �curve theory 2�. It
is seen that the difference between the results from the re-
parametrized and original model is small �the maximum dif-
ference is less than 1.3% for pure Au�. Both the models and
the experiment show the deviation from Vegard’s law �the
linear dependence between the lattice spacings and compo-
sitions for a constant temperature�, which is common for
many metallic alloys. Previously it was found that along
solid-liquid coexistence of HS mixtures the dependence of
lattice spacing on composition deviates from linear law when
HS diameter ratios are less than 0.90 �the pressure in that
study varies with the coexistence curve�.47 For Au-Cu solid
mixtures the diameter ratios of reference HS system are from
0.91 to 0.96 along the both theoretical curves in Fig. 4, i.e., it
seems that for metallic alloys the form of relationship is also
sensitive to other factors rather than just atom size ratio. We
note that, naturally, a multiparameter optimization of the po-
tential may be needed to yield perfect agreement for the

phase diagram and also other properties of liquid and solid
alloys obtained from the theory and experiments.

IV. CONCLUSIONS

To summarize, working with an EAM model, we have
implemented a consistent form of thermodynamic perturba-
tion theory, which has comparable accuracy for both the liq-
uid and solid metallic phases, and used it to study the freez-
ing of alloys. We found that the difference in the Au-Cu
solid-liquid phase diagrams obtained from the theory and
experiment is mostly due to the specific EAM model inter-
action potential for Au-Cu mixture. A reparametrized EAM
model potential for Au-Cu mixture is obtained by adjusting
the melting temperature of pure Au to reproduce the experi-
mental value. The computed Au-Cu solid-liquid phase dia-
gram with the new EAM potential is now in good agreement
with the experimental one. We note that previously the opti-
mization of an EAM model potential to adjust the melting
point was performed using computer simulations,28 which is
a very time-consuming process. We show that the strategy
for optimizing potentials using thermodynamic properties
can also be achieved efficiently by using the thermodynami-
cal perturbation theory.

We found that the asymmetry of the reference HS mixture
along the solid-liquid azeotropic phase diagram for Au-Cu is
not very high, with typical values of the diameter ratio of
0.91�	�0.94. It will be interesting to apply the theory to
binary alloys where there are larger disparities between HS
diameters, for instance, for alloys with eutectic type of phase
diagrams, such as Zr-Cu alloy, and also for alloys with other
crystal lattices.

Our approach can be extended to study the freezing of
ternary liquid alloys because all the involved theories �WCA
perturbation theory, FM DFT, the Foiles approach to the ef-
fective pair potential, and the methods for HS solid and liq-
uid correlation functions� can be straightforwardly general-
ized to such multicomponent mixtures. Since within our
approach the solid and liquid alloys are treated within a
single theoretical framework, it becomes possible to apply
this approach to examine also the interface between solid and
liquid metallic alloys.48
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